Functional analysis of the new barley gene HvKu80 indicates that it plays a key role in double-strand DNA break repair and telomere length regulation.

نویسندگان

  • Magdalena Stolarek
  • Damian Gruszka
  • Agnieszka Braszewska-Zalewska
  • Mirosław Maluszynski
چکیده

Genotoxic stress causes a reduced stability of the plant genome and has a detrimental effect on plant growth and productivity. Double-strand breaks (DSBs) are the most harmful of all DNA lesions because they cause the loss of genetic information on both strands of the DNA helix. In the presented study the coding and genomic sequences of the HvKu80 gene were determined. A mutational analysis of two fragments of HvKu80 using TILLING (Targeting Induced Local Lesions IN Genomes) allowed 12 mutations to be detected, which resulted in identification of 11 alleles. Multidirectional analyses demonstrated that the HvKu80 gene is involved in the elimination of DSBs in Hordeum vulgare. The barley mutants carrying the identified ku80.c and ku80.j alleles accumulated bleomycin-induced DSBs to a much greater extent than the parent cultivar 'Sebastian'. The altered reaction of the mutants to DSB-inducing agent and the kinetics of DNA repair in these genotypes are associated with a lower expression level of the mutated gene. The study also demonstrated the significant role of the HvKu80 gene in the regulation of telomere length in barley.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

RTEL1 contributes to DNA replication and repair and telomere maintenance

Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic ste...

متن کامل

Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1.

Immortalized cells maintain telomere length through either a telomerase-dependent process or a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Homologous recombination is implicated in the ALT pathway in both yeast and human ALT cells. In ALT cells, two types of DNA double-strand break repair and homologous recombination factors, the Rad50/Mre11/NBS1 complex an...

متن کامل

Study of the association FokI polymorphisms of the XRCC3 gene with the risk of breast cancer in women: brief report

Background: Breast cancer is one of the most common worldwide malignancies among women. Biological data suggest that damage induced by endogenous and exogenous factors affects the integrity of DNA and associated with susceptibility to breast cancer. Single nucleotide polymorphisms (SNPs) in DNA repair genes can associated with differences in the repair efficiency of DNA damage and may affect br...

متن کامل

Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere maintenance. The DNA-PK complex also functions in both DNA double strand break repair and telomere mainten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mutagenesis

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2015